

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Spectrofluorometric Determination of Cephalexin in Pharmaceutical Preparations and Spiked Human Urine Using 2-Cyanoacetamide

Dalia R. El-Wasseef^a

^a Faculty of Pharmacy, Medicinal Chemistry Department, Mansoura University, Mansoura, Egypt

To cite this Article El-Wasseef, Dalia R.(2007) 'Spectrofluorometric Determination of Cephalexin in Pharmaceutical Preparations and Spiked Human Urine Using 2-Cyanoacetamide', *Spectroscopy Letters*, 40: 6, 797 — 809

To link to this Article: DOI: 10.1080/00387010701506588

URL: <http://dx.doi.org/10.1080/00387010701506588>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

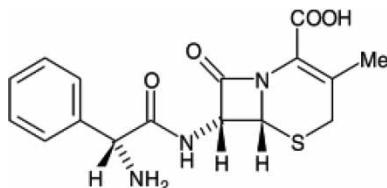
Spectrofluorometric Determination of Cephalexin in Pharmaceutical Preparations and Spiked Human Urine Using 2-Cyanoacetamide

Dalia R. El-Wasseef

Faculty of Pharmacy, Medicinal Chemistry Department, Mansoura
University, Mansoura, Egypt

Abstract: A simple, accurate, sensitive, and validated method was developed for the spectrofluorometric determination of cephalexin. The method involves the reaction of cephalexin with 2-cyanoacetamide in presence of 33% ammonia solution. The formed fluorescent product exhibited maximum fluorescence intensity at λ 439 nm, after excitation at λ 339 nm. Different experimental parameters affecting the derivatization reaction were carefully studied and incorporated in the procedure. Under the described conditions, the proposed method was linear over the concentration range 0.04–0.4 μ g/mL. The average percent found was $99.6 \pm 0.9\%$. The LOD was 7.76 ng/mL. The proposed method was applied for determination of cephalexin in pharmaceutical preparations as well as in spiked human urine. A mechanism of the reaction is postulated.

Keywords: Cephalexin, 2-cyanoacetamide, spectrofluorometry


INTRODUCTION

Cephalexin 7(D- α -amino- α -phenyl acetamide-3-methyl-3-cephem-4-carboxylic acid) is a first-generation cephalosporin and one of the most commonly used cephalosporin antibiotics (Scheme 1).

Several methods were reported for cephalexin determination in pharmaceutical preparations. The most recent of these methods include charge transfer complexation reactions with DDQ (2,3-dichloro-5,6-dicyano-*p*-benzoquinon),

Received 21 August 2006, Accepted 8 May 2007

Address correspondence to Dalia R. El-Wasseef, Faculty of Pharmacy, Medicinal Chemistry Department, Mansoura University, 35516 Mansoura, Egypt. E-mail: dodomum@yahoo.com

Scheme 1. Cephalexin.

TCNQ (7,7,8,8-tetracyanoquinodimethane),^[1] and chloranilic acid.^[2] Ascorbic acid was used as a colorimetric reagent after alkaline degradation.^[3] 1,2-Naphthoquinone 4-sulfonate reagent was also used for the determination of cephalexin in pharmaceutical and urine samples using solid phase extraction cartridges.^[4] Flow injection methods were also applied using tris(2,2-bipyridyl)ruthenium (II)–potassium permanganate systems,^[5] formaldehyde–potassium permanganate system,^[6] and *o*-phenanthroline iron system.^[7] Polarographic,^[8,9] voltammetric,^[10] HPLC,^[11–14] and micellar electrokinetic chromatography (MEKC)^[15,16] methods were also reported. The British^[17] and USP pharmacopeias^[18] recommend also HPLC methods. Few fluorometric methods were published for the determination of cephalexin, based on the reaction with acetyl acetone–formaldehyde,^[19] fluorescamine,^[20] or measurement of fluorescence intensity after acid hydrolysis and subsequent alkalization.^[21]

2-Cyanoacetamide (2-CAA) is a fluorogenic reagent; this reagent was used in post–column derivatization in HPLC determinations of catecholamines^[22] and carbohydrates^[23] and also used for the fluorometric determination of some important pharmaceutical compounds such as prenalterol HCl,^[24] oxamniquine,^[25] ascorbic acid,^[26] aminoglycosides,^[27] and 3,4-dihydroxyphenylalanine.^[28]

In the current work, 2-CAA is used for the fluorometric determination of cephalexin in presence of 33% ammonia solution.

MATERIALS AND METHODS

Apparatus

The fluorescence intensities were measured using a Perkin Elmer model LS 45 spectrofluorometer equipped with 20-W xenon discharge lamp, excitation, emission grating monochromators, and a 1 × 1 cm quartz cell. The apparatus is connected by an HP computer.

Materials and Reagents

All the chemicals were of analytical reagent grade, and all the solvents were of spectroscopic grade. Cephalexin monohydrate was kindly provided by

Glaxo-SmithKline (Cairo, Egypt). Cephalexin tablets, suspension, and vials were obtained from commercial sources. 2-Cyanoacetamide 1% aqueous solution and ammonia 33% (w/v) solution were from Merck (Darmstadt, Germany).

Preparation of Standard Solutions

A stock solution of cephalexin containing 1.0 mg/mL was freshly prepared every day in distilled water and was further diluted with the same solvent to get the working solution (0.1 mg/mL).

Construction of Calibration Graph

Transfer accurately measured portions (0.1–1.0 mL) of the working solution into a set of 25-mL volumetric flasks. Add 2.0 mL of 1% 2-CAA and 2.5 mL of 33% ammonia solution. Heat the reaction mixture in a boiling water bath for 25 min then cool, and make up to volume with distilled water. Measure the fluorescence intensity at λ 435 with excitation at λ 339 nm against a reagent blank. The calibration graphs were obtained by plotting the fluorescence intensities against the concentration of cephalexin; alternatively derive the corresponding regression equation.

Assay of Dosage Forms

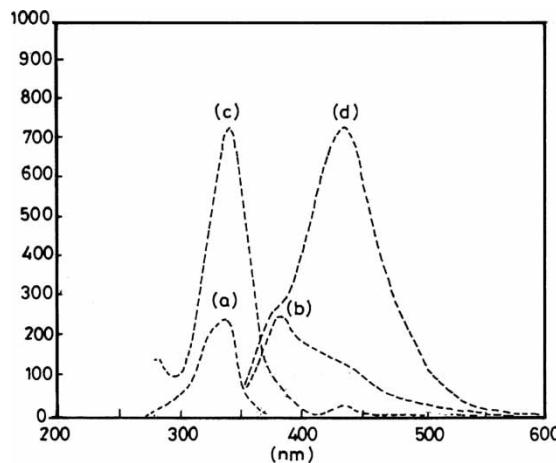
Tablets, Capsules, Vials

Weigh and pulverize 10 tablets, mix the contents of 10 capsules, or mix the contents of 10 vials. An accurately weighed amount of the powder equivalent to 20 mg cephalexin was transferred to a 100 mL measuring flask. Add 50 mL distilled water, sonicate for 10 min, filter, then dilute the filtrate with distilled water and continue the procedure as described under “Construction of Calibration Graph”. The nominal contents of the drug in each solution were calculated using either the calibration graph or the corresponding regression equation.

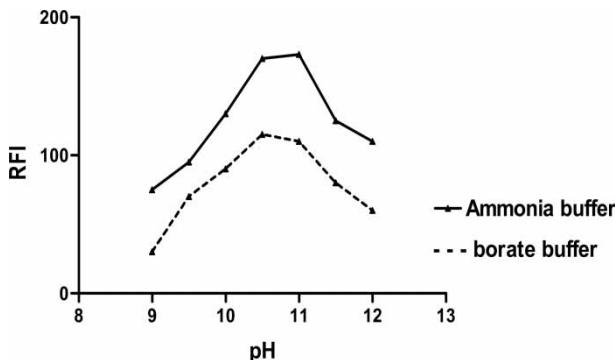
Suspensions

Transfer an accurately measured volume of the reconstituted syrup, equivalent to 10 mg of cephalexin, into a conical flask. Add 50 mL distilled water, sonicate for 10 min, then filter. Transfer the filtrate into a 100-mL measuring flask and dilute to the mark with water to obtain a working solution of 0.1 mg/mL. The procedure is continued as described under “Construction of Calibration Graph.”

Assay of Spiked Human Urine


In a set of 10-mL centrifugation tubes, spike 5 mL aliquots of urine with varying amounts of cephalexin to give final required concentration, add 5 mL methanol to each tube, and vortex the mixture at 1500 rpm for 5 min.^[20] Transfer 1.0 mL of the supernatant into a 25-mL volumetric flask and continue as described under "Construction of Calibration Graph." Carry out a blank experiment adopting the above procedure.

RESULTS AND DISCUSSION

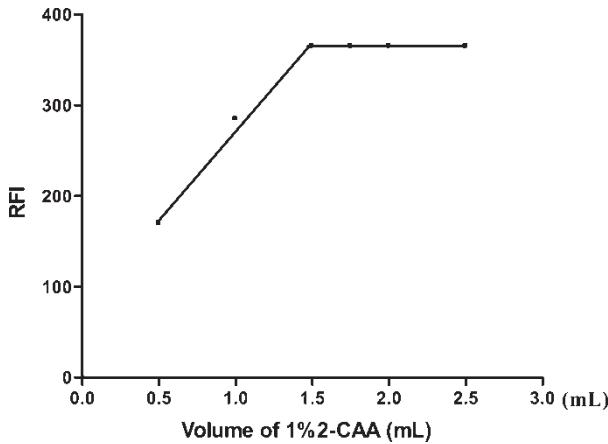

Treatment of cephalexin with 2-CAA in the presence of ammonia solution was found to give a fluorescent product. The formed fluorophore (Fig. 1) exhibits strong fluorescence at λ 435 with excitation at λ 339 nm.

Optimization of the Reaction Conditions

The reaction between cephalexin and 2-CAA was studied in different alkaline media: borate buffer (pH 9–12) and ammonia buffer (pH 9–12). Results in Fig. 2 show that the fluorescence intensity increases with increasing pH values up to pH 11 then decreases; different media such as 0.1 M NaOH and 33% ammonia with the same pH (10.5–11) were studied. The results in Table 1

Figure 1. Fluorescence spectra of cephalexin after reaction with 2 mL 1% 2-CAA and 2.5 mL 33% ammonia solution: *a* and *b*, excitation and emission spectra of blank; *c* and *d*, excitation and emission spectra of the reaction product (cephalexin 0.40 μ g/mL).

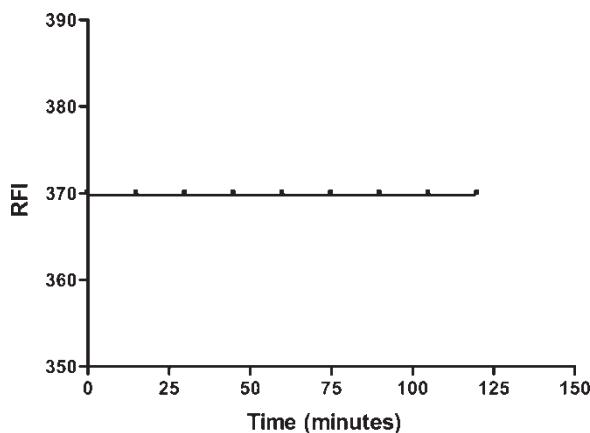
Figure 2. Effect of buffer pH on the fluorescence intensity of the reaction product of cephalexin (0.20 µg/mL) with 1% 2-CAA.

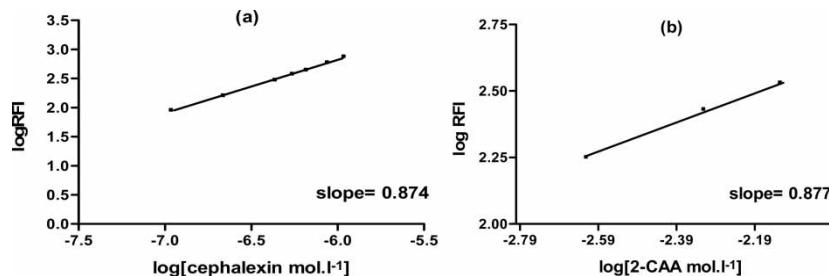

show that the reaction gives the highest fluorescence intensity with 2.5 ± 0.1 mL of 33% ammonia. The difference in response to different alkaline media may be attributed to the change in the medium polarity, which results in some source of physical interaction between buffer and the excited singlet state of the drug molecule.

Regarding the reagent concentration, it was found that 1% 2-CAA gave the maximum intensity. By studying the effect of varying the volume of the reagent, it was found that 2 ± 0.2 mL was enough for maximum fluorescence intensity as shown in Fig. 3.

For the reaction time and stability of the reaction product, it was found that the maximum formation of the fluorophore takes place after 20 min upon heating in a boiling water bath. The formed fluorophore was stable for at least 2 hr at room temperature (Fig. 4).

Table 1. Effect of 33% ammonia and 0.1 M NaOH on the reaction between cephalexin (0.2 µg/mL) and 2-CAA


Volume added (mL)	RFI	
	33% Ammonia	0.1 M NaOH
0.5	170.1	105.7
1.0	200.23	59.66
1.5	220.50	70.87
2.0	240.76	40.20
2.5	250.73	32.65
3.0	230.55	20.39


Figure 3. Effect of volume of 1% 2-CAA on the fluorescence intensity of the reaction product of cephalexin (0.20 μ g/mL) using 2.5 mL 33% ammonia.

Stoichiometry of the Reaction

The stoichiometry of the reaction was studied adopting the limiting logarithm method.^[29] The two straight lines obtained upon using increasing concentrations of the drug while keeping the concentration of the reagent constant (Fig. 5a) and upon using increasing concentrations of the reagent while keeping the concentration of the drug constant (Fig. 5b) gave two slopes with values of 0.874 and 0.877, respectively. Therefore, the molar reactivity

Figure 4. Effect of time on the fluorescence stability of the formed fluorophore of cephalexin (0.2 μ g/mL) after reaction with 2 mL 1% 2-CAA, 2.5 mL ammonia in a boiling water bath for 20 min.

Figure 5. Limiting logarithmic plots for molar ratio: (a) log RFI vs. log [cephalexin] with [2-CAA] kept at 1.25×10^{-3} M; (b) log RFI vs. log [2-CAA] with [cephalexin] kept at 5.47×10^{-3} M.

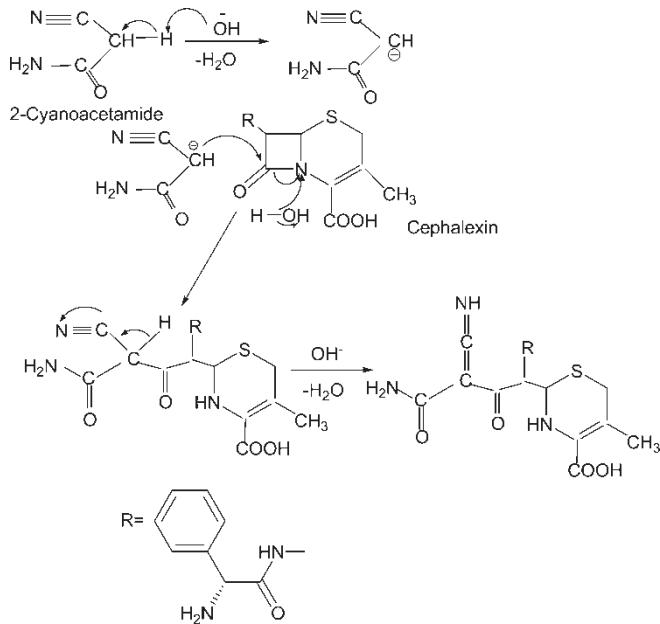
of the reaction is 1:1, hence the reaction pathway was proposed in two steps: first 2-CAA forms a carboanion in presence of 33% ammonia, followed by a nucleophilic substitution on the carbon atom of the carbonyl group of β -lactam ring with ring opening to give a highly conjugated fluorophore^[30] as shown in Scheme 2.

Validation

Linearity

There was a linear dependence of the relative fluorescence intensity on the concentration of cephalexin. Under the described experimental conditions, the fluorescence intensity–concentration plot was rectilinear over the range 0.04–0.4 $\mu\text{g}/\text{mL}$. Linear regression analysis of the data gave the following equation

$$\text{RFI} = 13.887 + 1789.436 C, \quad r = 0.9998,$$


where RFI is the relative fluorescence intensity and C is the concentration in $\mu\text{g}/\text{mL}$.

The good linearity of the calibration graphs and the negligible scatter of the experimental points are clearly evident by the correlation coefficient.

LOQ (Limit of Quantification) and LOD (Limit of Detection)

The LOQ was determined by establishing the lowest concentration that can be measured with acceptable accuracy and precision. Cephalexin can be quantified under these conditions at a concentration of 0.0231 $\mu\text{g}/\text{mL}$.

The LOD was calculated by establishing the minimum level at which cephalexin can be reliably detected, and it was found to be 7.76 ng/mL .^[31]

Scheme 2. Proposal of the mechanism of the reaction between cephalaxin and 2-cyanoacetamide in 33% ammonia solution.

Precision

The results of intraday and interday accuracy and precision of the method are summarized in Table 2. The interday and intraday precisions were examined by analyzing the three concentrations three times for 3 consecutive days. The repeatability of the method is fairly high indicated by the low values of SD and RSD. The interday and intraday accuracy was also proved by the low values of Er% (error percent).

Robustness

The robustness of the method is demonstrated by its capacity to remain unaffected by small but deliberate variation in method parameters.

Analytical application

The validity of the method could be proved by analyzing an authentic sample of cephalaxin. The results obtained in Table 3 were in good agreement with those given by the official method. Statistical analysis of the results obtained by both methods by applying the Student's *t*-test and variance

Table 2. Evaluation of the accuracy and precision data of the proposed spectrofluorometric method for the determination of cephalexin

Conc. added ($\mu\text{g/mL}$)	Conc. found ($\mu\text{g/mL}$)			
	SD \pm mean	% Recovery	RSD%	Er%
Intraday				
0.16	0.159 \pm 0.002	99.94 \pm 0.89	0.89	0.63
0.20	0.199 \pm 0.002	99.74 \pm 0.95	0.95	0.48
0.32	0.319 \pm 0.002	99.92 \pm 0.66	0.66	0.33
Interday				
0.16	0.161 \pm 0.001	100.36 \pm 0.67	0.67	0.33
0.20	0.200 \pm 0.001	100.63 \pm 0.69	0.69	0.34
0.32	0.321 \pm 0.002	100.14 \pm 0.63	0.63	0.31

ratio F-test reveals no significant difference between the performances of the two methods. Statistical evaluation of the regression line regarding standard deviation of the residuals ($S_{y/x}$), standard deviation of the slope (S_b), and standard deviation of the intercept (S_a) gave the values 0.009 , 6.9×10^{-4} , and 0.003 respectively.

The simplicity of the method and the stability of the reaction product permitted the determination of cephalexin in its commercial tablets, capsules, suspensions, and vials. The results obtained were in good agreement with those given using the official method (Table 4). Common

Table 3. Application of the proposed method for the determination of cephalexin in pure form

Proposed method			Reference method ^[20]
μg Taken	μg Formed	% Recovery	
0.04	0.0397	99.25	100.20
0.08	0.081	101.25	100.88
0.16	0.159	99.38	99.58
0.20	0.201	100.50	
0.24	0.239	99.58	
0.32	0.319	99.69	
0.40	0.401	100.25	
X'		99.99	100.22
\pm SD		0.72	0.62
t		1.38(2.306)	
F		1.23(6.16)	

Each result is the average of three separate determinations. Values between brackets are the tabulated *t* values and *F*-values at *p* = 0.05.

Table 4. Application of the proposed method for the determination of cephalexin in dosage form

Pharmaceutical preparation	Proposed method			Reference method ^[20]		
	Added $\mu\text{g/mL}$	Found $\mu\text{g/mL}$	Recovery (%)	Added $\mu\text{g/mL}$	Found $\mu\text{g/mL}$	Recovery (%)
Ceporex suspension ^a (250 mg cephalexin/5 mL)	0.16	0.161	100.6	0.201	0.201	100.50
	0.20	0.198	99.00	0.30	0.297	99.00
	0.24	0.238	99.20	0.40	0.398	99.50
	0.32	0.322	100.60			
	0.40	0.403	100.80			
$X' \pm SD$			100.04 ± 0.86			99.70 ± 0.76
t			1.36 (2.45)			
F			1.13 (6.94)			
Ceporex tablets ^a (500 mg cephalexin/tablet)	0.16	0.159	99.40	0.20	0.198	99.00
	0.20	0.203	101.50	0.30	0.302	100.66
	0.24	0.241	100.40	0.40	0.405	99.75
	0.32	0.321	100.30			
	0.40	0.399	99.80			
$X' \pm SD$			100.22 ± 0.68			99.8 ± 0.83
t			1.92 (2.45)			
F			1.71 (6.94)			
Ceporex vial ^a (1 g cephalexin/vial)	0.16	0.162	101.3	0.20	0.199	99.50
	0.20	0.199	99.30	0.30	0.298	99.30
	0.24	0.241	100.4	0.40	0.402	100.50
	0.32	0.319	99.70			
	0.40	0.397	99.30			
$X \pm SD$			100.04 ± 0.82			99.8 ± 0.64
t			1.06 (2.45)			
F			1.28 (6.94)			

Each result is the average of three separate determinations.

Values between brackets are the tabulated t values and F -values at ($p = 0.05$).

^aProducts of Glaxo-Smithkline.

Table 5. Application of the proposed method for the determination of cephalexin in spiked human urine sample

Spiked amount ($\mu\text{g/mL}$)	% Found
0.08	97.50
0.16	99.30
0.24	102.08
0.32	98.75
Mean \pm SD	99.63 \pm 2.3

Each result is the average of three separate determinations.

tablet excipients, such as talc powder, starch, lactose, magnesium stearate, and gelatin, did not interfere with the assay.

The high sensitivity attained by the proposed method allowed its extension to the *in vitro* determination of cephalexin in spiked human urine samples. Cephalexin is administered in doses of 500 or 1000 mg resulting in a urine level of 1 mg per mL. About 80% or more of the dose is excreted unchanged in the urine in the first 24 hr by glomerular filtration and tubular excretion.^[32] Thus, the proposed method is sufficient for routine estimation of the drug in human urine. The results shown in Table 5 are satisfactorily accurate and precise.

CONCLUSIONS

A simple, accurate, and precise method was developed for the determination of cephalexin in dosage forms and spiked human urine. The method can measure concentration down to 7.76 ng/mL. The method is simple, rapid, and readily adaptable to routine quality control laboratories.

REFERENCES

1. Saleh, G. A.; Askal, H. F.; Radwan, M. A.; Omar, M. A. Use of charge transfer complexation in the spectrophotometric analysis of certain cephalosporins. *Talanta* **2001**, *54*, 1205–1215.
2. Saleh, G. A.; Askal, H. F.; Darwish, I. A.; El-Shorbagi, A.-N. A Spectroscopic analytical study for the charge transfer complexation of certain cephalosporins with chloranilic acid. *Anal. Sci.* **2003**, *19*, 281–287.
3. El-Obeid, H. A.; Gad-Kariem, E. A.; Al-Rashood, K. A.; Al-Khamees, H. A.; El-Shafie, F. S.; Bawazeer, G. A. M. A selective colorimetric method for the

determination of penicillins and cephalosporins with α -aminoacyl functions. *Anal. Lett.* **1999**, *32*, 2809–2823.

- 4. Martinez, L. G.; Cabeza, A. S.; Falco, P. C.; Reig, F. B. A New procedure for the determination of cephalexin with 1,2-naithoquinone 4-sulphonate in pharmaceutical and urine samples using solid-phase extraction cartridges and UV-visible detection. *Anal. Chem. Acta* **1998**, *370*, 115–123.
- 5. Thongpoon, Ch.; Liawruangrath, B.; Liawruangrath, S.; Wheatley, A. R.; Townshend, A. Flow-injection chemiluminescence determination of cephalosporins in pharmaceutical preparations using tris (2,2'-bipyridyl) ruthenium (II)-potassium permanganate system. *Anal. Chem. Acta* **2005**, *553*, 123–133.
- 6. Wang, J. W.; Xiong, H. Y. Flow-injection chemiluminescence determination of cephalexin and cephadrine in pharmaceuticals. *Fenxi Shiyanshi* **2004**, *23*, 9–13.
- 7. Al-Momani, I. F. Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. *J. Pharm. Biomed. Anal.* **2001**, *25*, 751–757.
- 8. Xu, M.; Ma, H.; Song, J. Polarographic behavior of cephalexin and its determination in pharmaceuticals and human serum. *J. Pharm. Biomed. Anal.* **2004**, *35*, 1075–1081.
- 9. Abdel Gaber, A. A.; Ghandour, M. A.; El-Said, H. S. Polarographic studies of some metal(II) complexes with cephalosporins selected from the first generation. *Anal. Lett.* **2003**, *36*, 1245–1260.
- 10. AboEl-Maali, N.; Osman, A. H.; Aly, A. A.; Al-Hazmi, G. A. Voltammetric analysis of Cu(II), Cd(II) and Zn(II) complexes and their cyclic voltammetry with several cephalosporin antibiotics. *Bioelectrochemistry* **2005**, *65*, 95–104.
- 11. Joshi, Sh. HPLC separation of antibiotics present in formulated and unformulated samples. *J. Pharm. Biomed. Anal.* **2002**, *28*, 795–809.
- 12. Samanidou, V. F.; Hapeshi, E. A.; Papdoyannis, I. N. Rapid and sensitive high-performance liquid chromatographic determination of four cephalosporin antibiotics in pharmaceuticals and body fluids. *J. Chromatogr. B* **2003**, *788*, 147–158.
- 13. Zendelovska, D.; Stafilov, T.; Petrov, S. Simultaneous quantification of cefaclor and cephalexin in blood plasma using high-performance liquid chromatography with UV detection. *Acta Pharmaceutica* **2002**, *52*, 243–250.
- 14. Kaskhedikar, S. G.; Argal, A. Simultaneous estimation of bromhexine hydrochloride and cephalexin in capsule by high performance liquid chromatography. *Indian Drugs* **2001**, *38*, 137–139.
- 15. Steppe, M.; Prado, M. S. A.; Tavares, M. F. M.; Pinto, T. J. A.; Kedor-Hackmann, E. R.; Santoro, M. I.R.M. Comparison of micellar electro kinetic chromatography, liquid chromatography, and microbiologic assay for analysis of cephalexin in oral suspensions. *J. AOAC Int.* **2003**, *86*, 707–713.
- 16. Sciacchitano, C. J.; Mopper, B.; Specchio, J. J. Identification and separation of five cephalosporins by micellar electrokinetic capillary chromatography. *J. Chromatogr. B* **1994**, *657*, 395–399.
- 17. Ma, Q. L.; Yang, J. H.; Wu, X.; Huang, F.; Sun, L. M. A Selective fluorimetric method for the determination of some β -lactamic antibiotics. *Anal. Lett.* **2000**, *33*, 2689–2699.
- 18. *British Pharmacopoeia*; Her Majesty's Stationery Office: London, UK, 2000; Vol. I and II, pp. 253.
- 19. *The United States Pharmacopoeia 27, National Formulary 22*. Asian edition *U.S. Pharmacopeial Convention*: Rockville MD, 2004; p. 394.

20. Hefnawy, M.; El-shabrawy, Y.; Belal, F. Spectrofluorometric determination of alpha-aminocephalosporins in biological fluids and pharmaceutical preparations. *J. Pharm. Biomed. Anal.* **1999**, *21*, 703–707.
21. Aly, F. A.; Hefnawy, M. M.; Belal, F. A selective spectrofluorimetric method for the determination of some α -aminocephalosporins in formulations and biological fluids. *Anal. Lett.* **1996**, *29*, 117–130.
22. Honda, S.; Takahashi, M.; Araki, Y.; Kakehi, K. Postcolumn derivatization of catecholamines with 2-cyanoacetamide for fluorimetric monitoring in high-performance liquid chromatography. *J. Chromatogr. Biomed. Appl.* **1983**, *274*, 45–52.
23. Honda, S.; Takahashi, M.; Kaheki, K.; Ganno, S. Rapid, automated analysis of monosaccharides by high performance anion exchange chromatography of borate complexes with fluorimetric detection using 2-cyanoacetamide. *Anal. Biochem.* **1981**, *113*, 130–138.
24. Aly, F. A. Spectrofluorimetric determination of prenalterol hydrochloride in pharmaceutical preparations and biological fluids. *J. Pharm. Biomed. Anal.* **1999**, *18*, 993–997.
25. Rizk, M.; Belal, F.; Ibrahim, F.; Ahmed, S. M.; el-Enany, N. M. Fluorimetric determination of oxamniquine in biological fluids. *Il Farmaco* **1999**, *54*, 47–50.
26. Yang, J.; Ma, Q.; Huang, F.; Sun, L.; Dong, J. A new fluorimetric method for the determination of ascorbic acid. *Anal. Lett.* **1998**, *31*, 2757–2766.
27. Zakhari, N. A. Spectrophotometric assay of certain aminoglycosides using 2-cyanoacetamide. *Anal. Lett.* **1990**, *23*, 1843–1849.
28. Liu, Y.; Yang, J.; Wu, X.; Li, L. Fluorometric determination of 3,4-dihydroxyphenylalanine with 2-cyanoacetamide. *J. Fluorescence* **2003**, *13*, 123–128.
29. Rose, J. Chemistry, physical and theoretical. In *Advanced Physico-Chemical Experiments*, Sir Isaac Pitman & Sons: London, 1964; p. 67.
30. Marrelli, L.P. In *Analytical Profiles Drug Substances*; K. Florey (ed.), Academic Press: New York, 1975; Vol. 4, p. 36.
31. Miller, J. N.; Miller, J. C. In *Statistics and Chemometrics for Analytical Chemistry*, 5th edn.; Pearson Education Ltd: London, 2005; p. 121.
32. Sweetman, S. (ed.) *Martindale: The Complete Drug Reference*, 35th edn.; Pharmaceutical Press: London, 2007.